

HUFFMAN CODING:

AN APPLICATION OF BINARY TREES AND

PRIORITY QUEUES

Encoding and Compression of Data

• Fax Machines

• ASCII

• Variations on ASCII

• min number of bits needed

• cost of savings

• patterns

• modifications

•6/2/2016

Purpose of Huffman Coding

• Proposed by Dr. David A. Huffman in 1952

• “A Method for the Construction of Minimum Redundancy Codes”

• Applicable to many forms of data transmission

• Our example: text files

•6/2/2016

The Basic Algorithm

• Huffman coding is a form of statistical coding

• Not all characters occur with the same frequency!

• Yet all characters are allocated the same amount of space

• 1 char = 1 byte, be it e or x

•6/2/2016

The Basic Algorithm

• Any savings in tailoring codes to frequency of character?

• Code word lengths are no longer fixed like ASCII.

• Code word lengths vary and will be shorter for the more

frequently used characters.

•6/2/2016

The (Real) Basic Algorithm

 1. Scan text to be compressed and tally occurrence of all

characters.

 2. Sort or prioritize characters based on number of

occurrences in text.

 3. Build Huffman code tree based on prioritized list.

 4. Perform a traversal of tree to determine all code words.

 5. Scan text again and create new file using the Huffman

codes.

•6/2/2016

Building a Tree

• Consider the following short text:

 Eerie eyes seen near lake.

• Count up the occurrences of all characters in the text

•6/2/2016

Building a Tree
Scan the original text

 Eerie eyes seen near lake.

• What characters are present?

E e r i space

y s n a r l k .

•6/2/2016

Building a Tree
Scan the original text
Eerie eyes seen near lake.
• What is the frequency of each character in the text?

Char Freq. Char Freq. Char Freq.
 E 1 y 1 k 1
 e 8 s 2 . 1
 r 2 n 2
 i 1 a 2
 space 4 l 1

•6/2/2016

Building a Tree
Prioritize characters

• Create binary tree nodes with character and frequency of

each character

• Place nodes in a priority queue

• The lower the occurrence, the higher the priority in the queue

•6/2/2016

Building a Tree
Prioritize characters

• Uses binary tree nodes

public class HuffNode
{
 public char myChar;
 public int myFrequency;
 public HuffNode myLeft, myRight;
}

priorityQueue myQueue;

•6/2/2016

Building a Tree

• The queue after inserting all nodes

• Null Pointers are not shown

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

•6/2/2016

Building a Tree

• While priority queue contains two or more nodes

• Create new node

• Dequeue node and make it left subtree

• Dequeue next node and make it right subtree

• Frequency of new node equals sum of frequency of left and right children

• Enqueue new node back into queue

•6/2/2016

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

•6/2/2016

Building a Tree

E
1

i
1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

•6/2/2016

Building a Tree

E
1

i
1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

•6/2/2016

Building a Tree

E
1

i
1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

•6/2/2016

Building a Tree

E
1

i
1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

•6/2/2016

Building a Tree

E
1

i
1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

•6/2/2016

Building a Tree

E
1

i
1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

•6/2/2016

Building a Tree

E
1

i
1

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

•6/2/2016

Building a Tree

E
1

i
1

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

•6/2/2016

Building a Tree

E
1

i
1

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

•6/2/2016

Building a Tree

E
1

i
1

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

•6/2/2016

Building a Tree

E
1

i
1

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

•6/2/2016

Building a Tree

E
1

i
1

sp

4

e

8 2

y
1

l
1

2
k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e

8 2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e

8
2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

What is happening to the characters

with a low number of occurrences?

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e

8 2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e

8 2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e

8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

10

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e

8

2

y
1

l
1

2

k
1

.
1

2 r
2

s
2

4

n
2

a
2

4

4

6

8

10

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

10

16

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e
8 2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

10

16

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

 10

16

26

•6/2/2016

Building a Tree

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

 10

16

26

•After

enqueueing

this node

there is only

one node left

in priority

queue.

•6/2/2016

Building a Tree

Dequeue the single node

left in the queue.

This tree contains the

new code words for each

character.

Frequency of root node

should equal number of

characters in text.

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

 10

16

26

Eerie eyes seen near lake.  26 characters

•6/2/2016

Encoding the File
Traverse Tree for Codes

• Perform a traversal of the

tree to obtain new code

words

• Going left is a 0 going right

is a 1

• code word is only

completed when a leaf

node is reached
E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

 10

16

26

•6/2/2016

Encoding the File
Traverse Tree for Codes

Char Code
E 0000
i 0001
y 0010
l 0011
k 0100
. 0101
space 011
e 10
r 1100
s 1101
n 1110
a 1111

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

 10

16

26

•6/2/2016

Encoding the File

• Rescan text and encode file

using new code words

Eerie eyes seen near lake.

Char Code

E 0000
i 0001
y 0010
l 0011
k 0100
. 0101
space 011
e 10
r 1100
s 1101
n 1110
a 1111

0000101100000110011

1000101011011010011

1110101111110001100

1111110100100101

 Why is there no need

for a separator

character?

.

•6/2/2016

Encoding the File
Results

• Have we made things

any better?

• 73 bits to encode the

text

• ASCII would take 8 * 26

= 208 bits

0000101100000110011

1000101011011010011

1110101111110001100

1111110100100101

If modified code used 4 bits per

 character are needed. Total bits

 4 * 26 = 104. Savings not as great.

•6/2/2016

Decoding the File

• How does receiver know what the codes are?

• Tree constructed for each text file.

• Considers frequency for each file

• Big hit on compression, especially for smaller files

• Tree predetermined

• based on statistical analysis of text files or file types

• Data transmission is bit based versus byte based

•6/2/2016

Decoding the File

• Once receiver has tree it

scans incoming bit stream

• 0  go left

• 1  go right

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4

6

8

 10

16

26

101000110111101111

01111110000110101

•6/2/2016

Summary

• Huffman coding is a technique used to compress

files for transmission

• Uses statistical coding

• more frequently used symbols have shorter code words

• Works well for text and fax transmissions

• An application that uses several data structures

•6/2/2016

